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Abstract 

We study the notion of a categorically compact topological group, suggested by the Kuratow- 
ski-Mrowka characterization of compact spaces. A topological group G is categorically compact, 

or C-compact, if for any topological group H the projection G x H --+ H sends closed subgroups 
to closed subgroups. We prove, among others, the following theorems: (1) any product of C- 
compact topological groups is C-compact; (2) separable C-compact groups are totally minimal; 
(3) C-compact soluble topological groups are compact. 01998 Elsevier Science B.V. 

AMS classification: Primary 22AO5; secondary 18A32, 22CO5, 54B10, 54D25, 54D30, 54D65 

1. Introduction 

By the well-known Kuratowski-Mrowka theorem, a topological space G is compact 

if and only if for every space H the projection p : G x H -+ H is a closed map [27]. 

This suggests the following 

Definition 1.1. A topological group G is categorically compact 

each topological group H the projection G x H + H sends closed 

to closed subgroups of H. 

(C-compact) if for 

subgroups of G x H 
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Unless otherwise specified, all topological groups under consideration are assumed to 

be HausdorK Obviously, compact groups are C-compact. We prove that the converse 

is true for soluble groups (Corollary 3.12). More generally, every C-compact group 

G contains a closed subgroup H such that the derived subgroup (H,H) is dense in 

H and the quotient G/H is compact (Theorem 3.10). We conjecture that there exists 

an infinite discrete C-compact group, but at the moment we have no example of a 

noncompact C-compact group. A countable discrete group G is C-compact if and only 

if it is hereditarily totally minimal, i.e. if any quotient of any subgroup of G does not 

admit a nondiscrete HausdorfT group topology (Theorem 5.5). Thus a discrete simple 

group with all proper subgroups finite is C-compact iff it is minimal. There exist simple 

infinite groups with all proper subgroups finite [28], but we do not know if a discrete 

group with these properties can be minimal. 

Compact spaces are characterized among all Tikhonov spaces by each of the fol- 

lowing properties: (1) X is compact iff X is absolutely closed, i.e. closed in every 

Tikhonov space containing it; (2) X is compact iff X is minimal, i.e. X does not 

admit a strictly coarser Tikhonov (or HausdortT) topology. Similar properties can be 

considered for topological groups, but in this case the classes of groups defined by 

these properties are much wider than the class of compact groups. 

Let us say that a topological group G is absolutely closed if G is closed in every 

topological group containing it as a topological subgroup. Recall that G is absolutely 

closed if and only if it is complete with respect to the upper uniformity (= the upper 

bound of the left and the right uniformities). Such groups are called Rajkov-complete 

or sup-complete, and we shall call them simply complete, since we do not use the 

notion of a Weil-complete group. 

A topological group is minimal if it does not admit a strictly coarser Hausdorff 

group topology [36]. There are complete minimal groups which are not compact (for 

example, the unitary group of a Hilbert space has this property [37], the first known 

example was the infinite symmetric group [S]). All such examples are nonabelian: a 

fundamental theorem due to Prodanov and Stoyanov [31] implies that abelian minimal 

complete groups are compact. 

We investigate the relations between C-compactness, completeness and minimality 

for topological groups. We show that every separable C-compact group is minimal 

(Corollary 3.6). We do not know if separability is essential in this assertion: 

Question 1.2. Is every C-compact group minimal? 

C-compact groups have the following property: if G is C-compact, then every image 

of G under a continuous homomorphism is complete (Theorem 2.3). This suggests the 

following 

Definition 1.3 (Dikranjan and Tonolo [16]). A topological group is h-complete if for 

any continuous onto homomorphism f : G -+ H the group H is complete (equivalently, 

for every continuous homomorphism f : G + H the subgroup f(G) of H is closed). 
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Any complete minimal topologically simple group is h-complete (we call a group 

topologically simple if it contains no nontrivial closed normal subgroups). Conse- 

quently, h-complete groups need not be compact. For example, for every n > 1 the Lie 

group SL,( R) is totally minimal ([33] or [14, Theorem 7.4.11) and thus h-complete. 

Moreover, every topological group is a subgroup of a complete minimal topologically 

simple group [40], hence complete groups are precisely closed subgroups of h-complete 

groups. On the other hand, abelian h-complete groups are compact (Theorem 3.7). 

In Section 2 we discuss some basic properties of C-compact groups and h-complete 

groups. We characterize C-compactness and h-completeness in terms of convergent 

filters and deduce that the classes of C-compact and h-complete groups are closed 

under arbitrary products. In Section 3 we prove that separable C-compact groups are 

minimal and deduce one of our main results: nilpotent h-complete groups and soluble 

C-compact groups are compact. In Section 4 we introduce another notion of categorical 

compactness (v-compactness) which is weaker than h-completeness and study the three- 

space property for these notions. In Section 5 we study locally compact (in particular, 

discrete) C-compact groups. 

Categorical compactness with respect to an appropriate notion of “closedness” was 

defined in the case of general categories by Manes [26] (see also [22]). Later, Fay [19] 

described the categorically compact modules with respect to a hereditary torsion theory. 

His results were generalized by Giuli and the first named author [12] for arbitrary tor- 

sion theories and for a more general concept of “closedness” based on closure operators 

(defined in the case of abstract categories as in [lo, 151). Categorical compactness in 

such setting was studied in [ 1 l] (for topological, Tech and filter convergence spaces), 

[16] (for topological modules), [32] (for locales) and [4] (for abstract categories). Since 

then categorical compactness is extensively studied in groups and rings (see [20] and 

the bibliography there) as well as in abstract categories (see [5] and the bibliography 

there). 

The notation and terminology follow [14, 18, 231. For groups the multiplicative 

notation is used, in particular, the neutral element is denoted by 1. If A and B are 

subgroups of a group G, then (A, B) is the subgroup of G generated by the commutators 

x-l y-‘xy, x E A, y E B. The closure of a subset X of a topological space is denoted 

by x. Finally, N(G) denotes the filter of neighbourhoods of unity of a topological 

group G. 

2. Basic properties of C-compact and h-complete groups 

The following two propositions are immediate: 

Proposition 2.1. C-compactness is preserved by continuous surjective homomorphisms 

and by closed subgroups. 

Proposition 2.2. Finite products of C-compact groups are C-compact. 
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Proposition 2.2 will be generalized later to infinite products (Theorem 2.8). We now 

show that all images of a C-compact group are complete: 

Theorem 2.3. Every C-compact group is h-complete. 

Proof. Let G be a C-compact group. We must show that for every morphism f : G + 

H the subgroup f(G) is closed in H. Since the graph of f is a closed subgroup of 

G x H which projects onto f(G), we can apply the definition of C-compactness to 

conclude that f(G) is closed. 0 

Recall that a space X is compact iff every filter on X has a cluster point or, equiva- 

lently, iff every ultrafilter on X converges. A Hausdorff space X is H-closed (= closed 

in every HausdorlT space containing X as a subspace) if and only if every filter on 

X with a base of open sets has a cluster point. We give a similar characterization of 

C-compact and h-complete groups (Theorems 2.7 and 2.11) and deduce that C-compact 

and h-complete groups are preserved by products (Theorems 2.8 and 2.13). 

Definition 2.4. A filter % on an abstract group G is said to be a g-jilter if there exists 

a homomorphism q : G + H into a topological group H such that for some h E H 

the family BV,h = {cp-‘(U) : U open in H, h E U} is a base of %. 

Remark 2.5. (a) Note that in the above definition h E cp(G). 

(b) If p : G + G’ is an onto homomorphism of abstract groups and 9 is a g-filter 

on G’, then p-l(%) is a base of a g-filter on G. The fact that g-filters are “transported” 

also via images is less obvious and will be proved in Proposition 2.6. 

Let us say that a family r of filters on a set X is compatible if r is bounded 

from above in the set of filters on X (equivalently, if the union of r has the finite 

intersection property). It is easy to see that the filter generated by a compatible family 

of g-filters on a group G is again a g-filter (consider the product of the corresponding 

topological groups). It follows from the Zom lemma that every g-filter on a group is 

contained in a maximal g-filter. 

Proposition 2.6. Let p : G + G’ be an onto homomorphism of abstract groups. 
Let % be a g-jilter on G. Then the image p(%) of % under p is a g-jilter on G’. 

Moreover, p(%) is a maximal g-jilter on G’ whenever 9 is a maximal g-filter on G. 

Proof. There exist a topological group H, a homomorphism cp : G -+ H with cp (G) = 

H and an h E H such that the family W = gV,t, = {cp-i(U) : U is an open neigh- 

bourhood of h} is a base of %. We identify G’ with the quotient group GIN, where 

N is the kernel of p. Let H’ = H/q(N), and let q : H -+ H’ be the quotient map. 

Let $ : G’ --f H’ be the homomorphism defined by $p = q(p. We claim that the image 

p(%) of % under p coincides with the g-filter on G’ with the base 99’ = g~.,~(h) 

(notation as in Definition 2.4). 
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It suffices to prove that ~(99) = $49’. Let B be the family of all open neighbourhoods 

of h in H. Then 99’ = {$-‘g(U) : U E 0) and ~(99) = (pq-‘(U) : U E 0). We 

have $-lq(U) = {gN : cp(g) E Ucp(N)} and p(p-l(U) = {gN : cp(g) E U} = {gN : 
cp(g) E L@(N)}. If U is open, then Uq(N) = L@(N). Thus $-lq(U) = pep-l(U) 
and hence p(a) = 8”. 

Suppose now that % is a maximal g-filter on G. The first part of our argument shows 

that %’ = p(%) is a g-filter on G’. Let f be a g-filter on G’ with %’ c f. We must 

show that %’ = $. The family p-‘(y) is a base of a g-filter on G compatible with 

8. Hence the family {A fl p-‘(B) : A E 9, B E $} is a base of a g-filter Z’ on G. 

Since % is maximal, X = %. It follows that f = p(X) = p(%) = %‘. 0 

Theorem 2.7. For a topological group G the following conditions are equivalent: 

(1) G is C-compact; 
(2) for every subgroup K of G every g-jilter on K has a cluster point in G; 
(3) for every subgroup K of G every maximal g-filter on K converges in G. 

Proof. (1) + (2): Assume that G is a C-compact group. Take a subgroup K of G 

and a g-filter 9 on K. There exists a homomorphism cp : K --t H into a topological 

group H such that for some h E p(K) the family {cp-‘( U) : h E U C H, U open} is 

a base of %. Let N C G x H be the graph of cp. Then by the C-compactness of G the 

projection p : G x H + H sends the closure g of N onto the closure of p(N) = q(K). 
Since h E q(K), this yields that for some g E G one has (g,h) E 7. Now for each 

neighbourhood V of g in G and for each neighbourhood U of h in H the subgroup N 

meets V x U. This means that V meets cp-‘( U). Hence g E cp- l (U). By the choice 

of cp : G -+ H and h E H this yields that g is a cluster point of %. 

(2) + (3): Let % be a maximal g-filter on a subgroup K of G. Let h E G be a 

cluster point of 9. We prove that % converges to h. Let 2 be the trace on K of 

the filter of neighbourhoods of h in G. Then f is a g-filter on K compatible with %, 

hence the filter X generated by % U 6p is a g-filter. Since 9 is maximal, we have 

% = X > f. This means that % converges to h. 
(3) + (2): This is obvious, since every g-filter is contained in a maximal g-filter. 

(2) + (1): We must show that for every topological group H the projection p : 

G x H -+ H sends each closed subgroup N of the product G x H to a closed subgroup 

of H. Let h E p(N). Denote by cp the restriction of p to N. Then g = BV,h is a 

base of a g-filter on N. Let q : G x H + G be the projection. Proposition 2.6 implies 

that q(g) is a base of a g-filter % on q(N). By the assumption on G, the filter % 

has a cluster point g E G. For every neighbourhood U of h in H the set q(p-‘(U) 
meets every neighbourhood V of g in G. This means that every neighbourhood V x U 
of (g, h) meets N. Since N is closed, we have (g, h) E N and hence h E p(N). This 

proves that p(N) = p(N). 0 

The equivalence of the conditions (1) and (3) of Theorem 2.7 readily implies that 

C-compactness is preserved by infinite products. 
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Theorem 2.8. The product of any family of C-compact groups is C-compact. 

Proof. This follows from Theorem 2.7 and Proposition 2.6. 0 

Definition 2.9. A filter 9 on a topological group is an og-jilter if it is a g-filter with 

a base of open sets. 

Lemma 2.10. A filter 9 on a topological group G is an og-filter if and only tf there 

exists a continuous homomorphism cp : G -+ H such that for some h E H the family 

$4?q.h = {up-’ : U open in H, h E U} is a base of P. 

Proof. The ‘V” part follows immediately from the definitions. To prove the reverse 

implication, assume that F is an og-filter on G. There exist a homomorphism (not 

necessarily continuous) cp : G -+ H and h E H such that the family gcp,h is a base 

for 9. It suffices to show that cp is continuous. Let U E N(H). Pick V E N(H) 
with V-’ V C U. Let A = qo-‘(hV). Then A E 2 Since 9 is an og-filter, the interior 

of A is not empty. It follows that A-‘A E ,2r(G). We have ~I(A-‘A)~(~V)-‘~V = 

V-‘V & U. Thus cp is continuous. 0 

Theorem 2.11. For a topological group G the following conditions are equivalent: 

( 1) G is h-complete; 
(2) every og-filter on G has a cluster point; 

(2a) every og-filter on G is jixed, 
(3) every maximal og-filter on G converges. 

Proof. (1) + (2a): This follows from Lemma 2.10. 

(2a) + (2): Trivial. 

(2) H (3): Similar to the proof of Theorem 2.7. 

(2) + (1): Suppose G is not h-complete. Then there exists a continuous homomor- 

phism cp : G 4 H such that q(G) is not closed. Let h E q(G) \ q(G). Then the 

family Bq,h is a base of an og-filter on G without a cluster point. 0 

Lemma 2.12. Let p : G + G’ be a continuous open onto homomorphism of topo- 
logical groups. The image of every maximal og-jilter on G under p is a maximal 

og-jilter on G’. 

Proof. Similar to the proof of Proposition 2.6. 0 

Just as in the case of C-compactness, we obtain the preservation of h-completeness 

by products: 

Theorem 2.13. The product of any family of h-complete groups is h-complete. 

Proof. This follows from Theorem 2.11 and Lemma 2.12. 0 
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Note that this theorem (and its proof) can be viewed as a group analogue of the 

theorem stating that H-closed spaces are preserved by products. 

Obviously, h-completeness is preserved by continuous sutjective homomorphisms. 

Example 5.6 shows that it is not preserved by closed normal subgroups. If G is a C- 

compact group, then all closed subgroups of G are C-compact and hence h-complete. 

This suggests the following 

Question 2.14. Let G be topological group in which every closed subgroup is h- 

complete. Must G be C-compact? 

We show that the answer is positive for SIN-groups (Theorem 2.16). A topological 

group is a SIN-group if the open sets which are invariant under inner automorphisms 

form a base at the unity. Equivalently, a topological group is SIN iff its left and right 

uniformities coincide. 

Lemma 2.15. Suppose G is a SIN-group, K is a dense subgroup of G and 9 is a 

g-jilter on K. Then the family { UA : U E M(G), A E 9”) is a base of an og-jilter 

on G. 

Proof. There exist a homomorphism (not necessarily continuous) cp : K -+ H to a 

topological group H and h E H such that cp(K) = H and the family .BV,h (notation 

of Definition 2.4) is a base of 9. Let d = {U(p-‘(V) : U E M(G), V E J(H)}. We 

claim that Q is a neighbourhood base at the unity for some (possibly non-HausdorfI) 

group topology F on G. 

Let B = Ul qp-‘( VI) E 8. We have to check that for every x E G there exists 

C E & with C2 C B and x-‘&LB. Pick a symmetric UEM(G) such that U is in- 

variant under inner automorphisms of G and U3 C U,. Pick y E K rl xU. Let z = 

q(y). Pick V&V(H) with V2 C Vi and z-‘Vz C Vi. Let C = Uq-‘(V). Since U 

is invariant under inner automorphisms, for every A C G we have UA = AU. It fol- 

lows that C2 = U2q-1(V)2 C B and x-‘Cx = (x-‘y)y-lCy(y-lx)C Uy-‘CyU = 
U3p-‘(z-‘Vz)C UI(p-‘(V,) = B. 

Let L be the completion of the Hausdorll group associated with (G, Y). The natural 

homomorphism p : G + L is continuous, since Y is coarser than the original topology 

of G. The restriction of Y on K is coarser than the inverse image of the topology 

of cp(K) & H under cp, hence there exists a continuous homomorphism q : q(K) + L 
such that plK = q(p. The homomorphism q extends to a homomorphism H 4 L, which 

we denote again by q. Let 1 = q(h). Let $ be the og-filter on G determined by p and 

1. The family JZ+?~,, is a base of 2. 

We claim that the filter 5%’ with the base { UA : U&V(G), A E 9) equals %. First we 

check that every J E f contains some C E V. Let J = p-‘( WI I), where WI E J(L). 
Pick W E M(L) with W2 & WI. Let U = p-‘(W) E JY(G) and V = q-‘(W) E 
M(H). Then J 2 p-‘(W)p-‘(Wl) 2 Uq-‘q-‘(WZ) = Uq-‘(VIZ) = C, where C E V. 

Thus f C 97. Note that $ is a Cauchy filter on (G, Y), where the group (G, .Y) 
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is equipped with the two-sided uniformity. It follows that V is also a Cauchy filter. 

We show that %’ is a minimal Cauchy filter. According to [3, Chapter 2, Section 3, 

Proposition 51, it suffices to check that for every C E %? there exist D E % and a 

neighbourhood W of unity in (G, Y) such that WD s C. Let C = Vi cp-‘( Vi h), where 

Ui E N(G) and Vi E N(H). Pick U E N(G) and V E M(H) so that U2 c Ui, 

V2 C VI and U is invariant under inner automorphisms of G. Then W = Uq-‘(V) and 

D = Z_Jrp-‘( Vh) have the required properties. 

Since f c % and %’ is minimal, we have f = %‘. Thus %? is an og-filter. 0 

Theorem 2.16. A SIN-group G is C-compact if and only if every closed subgroup of 

G is h-complete. 

Proof. We have noted that every closed subgroup of a C-compact group is h-complete. 

Let G be a SIN-group such that every closed subgroup of G is h-complete. Let K be 

a subgroup of G, and let F be a g-filter on K. According to Theorem 2.7, it suffices 

to show that 9 has a cluster point in G. Replacing G by K, we may assume that K 
is dense in G. Consider the family B = { UA : U E N(G), A E 9”). In virtue of 

Lemma 2.15, 9J is a base of an og-filter on G. Theorem 2.11 implies that B has a 

cluster point h in G. It is clear that h is also a cluster point of Y. 0 

We shall see below that h-completeness is not preserved by closed normal subgroups 

(Example 5.6). We show that it is preserved by closed central subgroups (Propo- 

sition 2.18). For this, a lemma is needed: 

Lemma 2.17. Let H be a closed central subgroup of a topological group G. Let f : 

H + H’ be a surjective continuous homomorphism. Then there exist a topological 
group G’, a closed subgroup H” of G’, a topological isomorphism i : H’ + H” and 

a continuous surjective homomorphism F : G --t G’ such that i o f = F/H. 

Proof. Let 9J be the family of subsets of G of the form f -'( U)V, where U E M(H’) 
and V E N(G). This family is invariant under inner automorphisms of G, and for every 

WI E B there exists W E 99 with W2 c WI (it is here that the assumption that H be 

central is used). Hence the filter generated by B is the filter of neighbourhoods of 

unity for some group topology F on G (not necessarily Hausdorf?). The Y-closure of 

H equals 

n{H. f-‘(U)V : U E M(H’), V E J’-(G)} = r){HV : V E N(G)} = H. 

Thus H is Y-closed in G. Hence H contains the F-closure K of { 1) in G. Clearly K 
is a normal subgroup of G. Let G’ be the quotient group G/K, and let F : G + G’ be 

the canonical morphism. Then K G H implies that H” = F(H) is a closed subgroup of 

G’. It is easy to see from the definition of the topology 9 that H” can be identified 

with the quotient group (H, Y_IH)/K and thus there exists a topological isomorphism 

i:H’+H” withiof =FIH. 0 
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Proposition 2.18. Every central closed subgroup of a h-complete group is h-complete. 

This result will be strengthened in the next section: the center of a h-complete group 

is compact. 

Proof. Let H be a central closed subgroup of a h-complete group G, and let f : H --+ 

H’ be a surjective continuous homomorphism. We must show that H’ is complete. In 

virtue of Lemma 2.17, H’ is isomorphic to a closed subgroup of a group G’ which 

is the image of G under a continuous homomorphism. Since G is h-complete, G’ is 

complete, and hence so is H’. 0 

3. Categorically compact soluble topological groups 

In this section we prove our main results: C-compact soluble groups and h-complete 

nilpotent groups are compact. The question whether h-complete soluble groups are 

compact remains open. 

A topological group G is precompact if its completion is compact or, equivalently, 

if for any U E N(G) there is a finite subset F C_ G such that FU = G. A topological 

group G is sometimes called o-bounded if for any U E ./Y(G) there is a countable 

subset A c G such that AU = G. In order to avoid confusion we shall call such 

groups w-precompact. (The term “w-bounded” has also a different meaning; namely, 

that closures of countable subsets are compact, for example, the term “w-bounded” 

in Theorems 4.2 and 4.4 of the survey [7] should be understood as “o-precompact”.) 

Obviously, separable groups are co-precompact. By virtue of a theorem due to Guran 

(see [ 1, 21, 391) a topological group is o-precompact if and only if it is isomorphic 

to a subgroup of a product of groups with a countable base. 

A topological group G is totally minimal if all Hausdorff quotients of G are minimal 

(see [13]). A group G is totally minimal if and only if every continuous surjective 

homomorphism G + H is open. We shall show that o-precompact C-compact groups 

are totally minimal (Corollary 3.5). The proof is based upon the Banach Open Mapping 

Theorem for complete groups with a countable base: 

Theorem 3.1 (the Banach open mapping Theorem, Banach [2]). Every continuous 
subjective homomorphism between complete groups with a countable base is open. 

See [29] for generalizations of this theorem. For the reader’s convenience we sketch 

the proof. 

Let f : G + H be a continuous surjective homomorphism, where G and H are 

complete groups with a countable base. For me&able groups “Rajkov-complete” is 

equivalent to “completely metrizable”, so G and H are Polish spaces. Let V E -K(G). 

Pick open U E M(G) with U-’ U & V. Then f(U) is analytic and hence has the Baire 

property [25, Section 39, II, Corollary 11, that is can be represented as a symmetric 
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difference of an open set 0 C H and a meager set. Since H can be covered by countably 

many translates of f(U), the set f(U) is not meager itself. It follows that 0 # 0. 

Now it is easy to see that f(U)f(U)-’ E M(H). Hence f(V) E M(H). 

Theorem 3.2. Let G be an w-precompact h-complete topological group. Then every 

continuous homomorphism f : G -+ H onto a metrizable group H is open. 

Proof. Let U E Jr/-(G). We must show that f(U) E A”(H). Since G embeds in the 

product of separable metrizable groups, we may assume that U = g-‘( I’) for some 

continuous homomorphism g : G + K onto a separable metrizable group K and some 

V E -V(K). Let h = (f,g) : G + H x K, and let L = h(G). Let p : L -+ H and 

q : L + K be the restrictions to L of the projections H x K --+ H and H x K -+ 

K, respectively. Then f = ph and g = qh. Let W = q-‘(V) E N(L). We have 

h(U) = hgg’(V) = hhh’q-‘(V) = W and f(U) = ph(U) = p(W). Since G is 

h-complete, the groups L and H, being homomorphic images of G, are complete. They 

are also separable, being metrizable and o-precompact. According to Theorem 3.1 the 

map p : L + H is open, hence f(U) = p(W) E N(H). 0 

Since every group with a countable network has a weaker metrizable group topology 

(see [l]), it follows from Theorem 3.2 that every h-complete group G with a countable 

network is metrizable and minimal. The same is true for any quotient of G, and we 

get: 

Corollary 3.3. Every h-complete topological group with a countable network is totally 

minimal and metrizable. 0 

Theorem 3.4. Let G be an o-precompact topological group such that all closed nor- 
mal subgroups of G are h-complete. Then G is totally minimal. 

Proof. We must show that for every continuous onto homomorphism f : G + H and 

every open U E M(G) the set f(U) is open in H. As in the proof of Theorem 3.2, 

we may assume that U = g-‘(V) for some g : G --+ K and some V E A’(K), where 

K has a countable base. Let L be the kernel of g. Then U = UL. Since L is a closed 

normal subgroup of G and hence h-complete by the assumption, the subgroup f(L) is 

closed in H and the quotient H/f(L) is Hausdorff. There is a natural homomorphism 

f- : G/L + H/f(L) induced by f. In virtue of Theorem 3.2, the homomorphism 

g : G --+ K is open, hence the quotient G/L is topologically isomorphic to K, and 

the homomorphism f can be considered as a homomorphism of K onto H/f(L). It 

follows that the group H/f(L) has a countable network. This group is also h-complete, 

being an image of G, so Corollary 3.3 shows that H/f(L) is metrizable. Applying 

Theorem 3.2 again, we see that the composition G + H -+ H/f(L) is open, hence the 

image of f(U) under the quotient map H + H/f(L) is open in H/f(L). This means 

that f(U) = f( UL) = f (U)f(L) is open in H. 0 
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Corollary 3.5. Every C-compact w-precompact topological group is totally minimal. 

Corollary 3.6. If G is C-compact, then every closed separable subgroup of G is totally 
minimal. 

We are now in a position to prove one of our main results: 

Theorem 3.7. Every abelian h-complete topological group is compact. 

Proof. Let G be an abelian h-complete group. Since h-completeness is preserved by 

closed central subgroups (Proposition 2.18), all closed subgroups of G are h-complete. 

Consider first the case when G is separable. Then G is w-precompact, and Theorem 3.4 

implies that G is totally minimal. In virtue of the Prodanov-Stoyanov theorem [31], 

every abelian minimal group is precompact (for totally minimal abelian groups this is 

due to Prodanov [30]). Since G is also complete, it follows that G is compact. This 

proves the theorem for separable groups. In the general case, the preceding argument 

shows that all closed separable subgroups of G are compact. It follows that G is 

countably compact. Being also complete, it is compact. 0 

We now generalize Theorem 3.7 to the case of nilpotent groups. Recall that the upper 
central series (Z,(G)} of a group G is defined by: Ze(G) = (1) and Z,+i(G)/Z,(G) 

is the center of G/Z,, (G). A group G is nilpotent if Z, (G) = G for some integer n. 

For a topological group G, the subgroups Z,(G) are closed. 

Theorem 3.8. For any h-complete topological group G all groups Z,, (G) of the upper 

central series of G are compact. 

Proof. Since h-completeness is preserved by closed central subgroups (Proposition 

2.18), for any n the abelian group Z,+i( G)/Z, (G), being the centre of an h-complete 

group G/Z,(G), is h-complete. Theorem 3.7 implies that the group Z,+i(G)/Z,,(G) is 

compact. Since the class of compact groups has the three-space property (see Section 4 

for the definition), we conclude, by induction, that all the groups Z,(G) are compact. 

Corollary 3.9. Every nilpotent h-complete topological group is compact. 

Theorem 3.10. Let G be a topological group such that all closed subgroups of G are 
h-complete. Then there is a closed subgroup H of G such that the commutator group 
(H,H) is dense in H and the quotient G/H is compact, 

Proof. Define the closed derived series {Gc”)} of G as follows: G(O) = G, G(“+‘) is 

the closure of the commutator group of G(*) and Gca) = nB_,, G(P) for limit ordinals 

~1. There is an ordinal y such that G (Y) = G(Y+‘). We show that H = G(y) is as 

required. 
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Since (H,H) is dense in H, it suffices to prove that G/H is compact. Consider first 

the case when G is w-precompact. Any quotient G(“)/G(“+‘) is abelian and h-complete, 

hence compact in virtue of Theorem 3.7. We prove by induction on a that the quo- 

tient G/G(‘) is compact. For non-limit ordinals c( this follows from the three-space 

property (see Section 4) of the class of compact groups. If tl is limit, there is a nat- 

ural injective homomorphism fa : G/G(‘) -+ n,,, G/G(b). Since G is h-complete, the 

range of fa is closed and hence compact by the assumption of induction, Theorem 3.4 

implies that fa is a homeomorphic embedding of G/G(“). It follows that G/G(“) is 

compact. 

This proves the theorem for the case when G is o-precompact. In the general case, 

consider a countable subset D of G/H and let D1 be a countable subset of G mapped 

onto D under the canonical homomorphism G + G/H. Then the closed subgroup K of 

G generated by D is separable. Consider K and its closed derived series {Kc”)}. We 

have Kc’) C Gca) for any c(. In particular, K(Y) C: H. The group K is o-precompact and 

satisfies the assumptions of the theorem, so the first part of the proof shows that the 

quotient K/K(Y) is compact. Hence the image of K in G/H, which is also the image of 

K/K(y) under the natural map K/K(y) + G/H, is compact. It follows that any countable 

subset of G/H is contained in a compact set. Thus G/H is countably compact. Being 

also complete, it is compact. 0 

The derived series G(“) of a group G is defined by: G(O) = G and G(“+‘) is the 

commutator group of G(“). A group G is soluble if Go’) = { 1) for some integer n. Let 

us say that a topological group G is topologically hyperabelian if for every subgroup 

H # { 1) of G the commutator group (H,H) is not dense in H. A topological group 

is topologically hyperabelian if and only if its closed derived series, as defined in the 

proof of Theorem 3.10, arrives at { 1) at some step, finite or infinite. Every soluble 

topological group is topologically hyperabelian. 

Corollary 3.11. Every C-compact topologically hyperabelian group is compact. 

Corollary 3.12. Every C-compact soluble topological group is compact. 

Question 3.13. Can “C-compact” be replaced by “h-complete” in Corollary 3.12? 

We do not know the answer even for metabelian groups. On the other hand, one 

can easily see that every h-complete supersoluble group (that is a group having a finite 

normal series with cyclic quotients) is finite, hence compact. 

Let us note that for any C-compact group the closed derived series G(“) stabilizes 

after o steps: G(“) = G(“+‘). Indeed, we saw in the proof of Theorem 3.10 that 

the quotient group K = G/GcW+‘) is compact. The quotient map G -+ K sends the 

series G(“) onto the closed derived series K ca) of K, thus it suffices to prove that 

Kcw) = K(@‘) for every compact group K. Since every compact group is a projective 

limit of compact Lie groups, the problem reduces to the case when K is Lie, and in 
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this case the assertion K(O) = Kcw+‘) is obvious, since any decreasing sequence of 

closed subgroups of a compact Lie group is eventually constant. 

4. The three-space property and v-compact groups 

A class X of topological groups has the three-space property if the following holds: 

if H is a closed normal subgroup of G and both H and G/H are in X, then G is 

in X [ 171. For example, the class of compact groups, the class of metrizable groups 

and the class of separable groups have this property, while the class of groups with 

a countable network does not [38]. We show that the class of h-complete groups has 

the three-space property (Proposition 4.2). This follows from a similar assertion for 

the class of complete groups: 

Lemma 4.1. The class of complete groups has the three-space property. 

This is a special case of [34, Theorem 12.41. For the reader’s convenience we give 

a proof. 

Proof. If H is a closed normal subgroup of G and G is the completion of G, then the 

quotient group G/H is isomorphic to a dense subgroup of d/l?, where fi is the closure 

of H in G [3, Chapter 3, Section 2, Proposition 211. Now suppose that H and G/H 
are complete. Then G/H is both dense and closed in G/I?, hence G/H = &/I?. Since 

H is complete, we have H = fi and thus G/H = e/H, It follows that G = G. 0 

Proposition 4.2. The class of h-complete groups has the three-space property. 

Proof. Let H be a closed normal subgroup of G such that H and G/H are h-complete. 

Let f : G + G’ be a continuous surjective homomorphism. We must show that G’ is 

complete. Let H’ = f(H). Since H is h-complete, H’ is closed in G’. The quotient 

group G’/H’ is also complete, being a homomorphic image of a h-complete group 

G/H. Lemma 2.7 implies that G’ is complete. 0 

Question 4.3. Does the class of C-compact groups have the three-space property? 

If N is a compact normal subgroup of G, then G is C-compact iff G/N is C-compact 

(it suffices to note that the canonical homomorphism f : G + G/N is a perfect map, so 

that for every group H the homomorphism f x idH : G x H -+ G/N x H is a closed map). 

Though h-complete groups need not be C-compact, they have the following weaker 

property naturally related to C-compactness: 

Definition 4.4. A topological group G is v-compact if for each topological group H 
the projection G x H -+ H sends closed normal subgroups of G x H to closed (normal) 

subgroups of H. 
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In the rest of this section we investigate the properties of this weaker notion of 

compactness. It is easy to see that v-compact groups are preserved by continuous 

homomorphisms and by finite products and that every central closed subgroup of a 

v-compact group is v-compact. 

Lemma 4.5. Let H be a h-complete subgroup of a topological group G and N be a 

closed normal subgroup of G. Then the subgroup NH is closed in G. 

Proof. Let q : G + G/N be the quotient map. Since H is h-complete, the subgroup 

q(H) is closed in G/N. Hence NH = q-lq(H) is closed in G. 0 

Theorem 4.6. Every h-complete group is v-compact. 

Proof. Let G be a h-complete group. We have to show that for each group H, the 

projection p : G x H --f H sends closed normal subgroups of G x H to closed subgroups 

of H. Let N be a closed normal subgroup of G x H. Lemma 4.5 implies that NG is 

closed in G x H (we consider G as a subgroup of G x H). Since NG = G x p(N), it 

follows that p(N) is closed in H. 0 

We characterize below v-compactness (Theorem 4.9) and deduce that v-compact 

abelian groups are compact. 

Lemma 4.1. For a topological group G the following conditions are equivalent: 
(a) G is v-compact; 

(6) for every topological group H the projection p : G x H + H sends each closed 
normal subgroup N of G x H with N nH = { 1) to a closed subgroup of H. 

Proof. The implication (a) + (b) is trivial. To check (b) + (a) take a topological 

group H and a closed normal subgroup N of G x H. Let Ni = N n H and H’ = H/Nl. 
The quotient map q : H + H’ is open, and so is the map $ = id x q : G x H + G x H’. 
Since N = $-l+(N), the normal subgroup N’ = +(N) is closed in G x H’. On the 

other hand, N’ n H’ = {l}, and H’ is HausdorfI since Ni is a closed subgroup of H. 

Hence our assumption on G yields that the subgroup p’(N’) is closed in H’, where 

p’ : G x H’ + H’ is the projection. Since p(N) = q-‘p’(N’), the subgroup p(N) is 

closed in H. q 

We omit an easy verification of the following lemma: 

Lemma 4.8. Let G and K be (abstract) groups, H be a subgroup of G and f : H -+ 
K be a homomorphism. Then the graph off is a normal subgroup of G x K tf and 
only tf H is a normal subgroup of G, the subgroup f(H) of K is central and (G,H) 
is contained in the kernel off. 
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Theorem 4.9. A topological group G is v-compact if and only if for every closed 
normal subgroup H c G the quotient H/( G, H) is compact. 

Proof. We prove the necessity. Suppose that G is v-compact. Let H be a closed normal 

subgroup of G. We must prove that the quotient L = H/( G, H) is compact. Since L is 

abelian, in virtue of Theorem 3.7 it suffices to show that L is h-complete. Equivalently, 

it suffices show that for every continuous homomorphism f : H --+ A which is trivial 

on (G, H) the subgroup f(H) is closed in A. Replacing A by f(H) we may assume 

that A = f(H). Then A is abelian since f(H) is so. Let r be the graph of f. The 

subgroup r is closed in H x A and hence also in G x A. According to Lemma 4.8, r 

is a normal subgroup of G x A. Since G is v-compact, the projection p : G x A + A 

sends r to a closed subgroup of A. Thus f(H) = p(T) is closed in A. 

Conversely, suppose that for every closed normal subgroup H c G the quotient 

H/(G,H) is compact. We must prove that G is v-compact. In virtue of Lemma 4.7, it 

suffices to show that for every topological group K and every closed normal subgroup 

NofGxKwithNnK={l}thesubgroupp(N)isclosedinK,wherep:GxK--,K 

is the projection. The group N is the graph of a (not necessarily continuous) homomor- 

phism f : H -+ K, where H is a normal subgroup of G. Let L = N f’ G = Ker f. Then 

L is a closed normal subgroup of G, and L 2(G, H) (Lemma 4.8). Let G’ = G/L, and 

let q : G x K -+ G’ x K = (G x K)/L be the quotient map. The subgroup N’ = q(N) 

is closed in G’ x K, since q-‘(N’) = N is closed in G x K. Let H’ = H/L be the 

image of H m G’. The group H’ is compact, since the quotient p/(G, 77) is compact 

by the assumption and (G, E) c (G, H) c L. Let p’ : G’ x K + K be the projection. 

The restriction of p’ to H’ x K is perfect. Since N’ is a closed subgroup of H’ x K, 

the subgroup p’(N’) of K is closed. It is clear that p’(N’) = p(N). Thus p(N) is 

closed in K. 0 

Corollary 4.10. Every topologically simple non-abelian topological group is v-compact. 

Corollary 4.11. Every abelian v-compact group is compact. 

More generally, we have: 

Theorem 4.12. For any v-compact topological group G all groups Z,,(G) of the upper 
central series of G are compact. 

The proof is the same as in the case of h-complete groups (Theorem 3.8). It follows 

that v-compact nilpotent groups are compact. 

Note that for non-abelian groups v-compactness is substantially weaker than h-com- 

pleteness (so that, contrary to h-completeness, it does not imply even completeness). 

Corollary 4.10 provides an easy example of a totally minimal non-complete group 

which is v-compact. Let X be an infinite set and let S(X) be the group of all permu- 

tations of X. Equip S(X) with the topology of pointwise convergence (considering X 
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as a discrete space). Let now A(X) be the subgroup of S(X) consisting of all even 

permutations of X with finite support. Then A(X) is a simple dense totally minimal 

subgroup ([8, 14, Proposition 7.1.2 and Theorem 7.1.9]), in particular A(X) is not 

complete. By Corollary 4.10 A(X) is v-compact. Note that S(X) is h-complete, being 

minimal, complete and topologically simple. 

We do not know the answer of the following. 

Question 4.13. Does the class of v-compact groups have the three-space property? 

Nevertheless we can prove: 

Proposition 4.14. If the group G has a normal h-complete subgroup K, then the 

quotient G/K is v-compact ifs G is v-compact. 

Proof. Assume that G/K is v-compact. Let f : G ---) G/K be the quotient homomor- 

phism, let H be a topological group and let N be a closed normal subgroup of G x H. 
In order to prove that for the projection p : G x H + H the subgroup p(N) is closed 

in H we consider the factorization p = p’@, where p’ : G/K x H -+ H is the projection 

and $ = f x idH : G x H + G/K x H. In virtue of Lemma 4.5 the subgroup NK is 

closed in G x H. Since NK > ker $, it follows that II/ is closed in GjK x H. It is 

also normal, since $ is surjective. By v-compactness of G/K now p’(+(NK)) = p(N) 
is closed in H. 0 

5. Locally compact categorically compact groups 

In this section we study locally compact, and in particular, discrete, C-compact 

groups. 

Proposition 5.1. Every connected locally compact C-compact group is compact. 

Proof. According to Corollary 3.12 the group R (being abelian and non-compact) is 

not C-compact. Let G be a connected locally compact C-compact group. Then G has no 

closed subgroup isomorphic to 6% By a theorem of Iwasawa (see [24]) G is compact. 

Every totally minimal, locally compact group is obviously h-complete. This remark 

and Proposition 5.1 imply that h-complete connected Lie groups need not be C-compact. 

For example, the Lie group SL,(R) is totally minimal [33] and hence h-complete, 

but not C-compact. An example with stronger properties will be given below (Exam- 

ple 5.6). 

Connectedness is important in Proposition 5.1. In fact, even in the simplest case 

of discrete groups the question whether C-compact groups are compact (i.e. finite) 

remains unclear: we do not know if there exists an infinite C-compact discrete group. 
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Question 5.2. Is every discrete C-compact group: 

(a) finite? 

(b) of finite exponent? 

(c) finitely generated? 
(d) countable? 

Note that “yes” to (c) yields that every discrete C-compact group satisfies the maxi- 
mum condition for subgroups. One can also ask if discrete C-compact groups satisfy 
the minimum condition for subgroups. 

It follows from Corollary 3.12 that every soluble subgroup of a discrete C-compact 
group G is finite. In particular, G is torsion. 

If G is a countable discrete C-compact group, then all subgroups of G are totally 
minimal (Corollary 3.6). Conversely, if all subgroups of a discrete group G are totally 
minimal, then G is C-compact (Corollary 5.4). 

Note that every totally minimal discrete group is h-complete. Shelah [35] constructed 
under CH an infinite discrete group which is minimal and simple, hence totally minimal 
and h-complete. We do not know if an infinite discrete h-complete group is available 
in ZFC. 

Since discrete groups are SIN-groups, Theorem 2.16 implies: 

Theorem 5.3. A discrete group G is C-compact if and only if every subgroup of G 

is h-complete. 

For a discrete group G the following are equivalent: (1) every g-filter on G is fixed; 
(2) there is no homomorphism of G onto a proper dense subgroup of a topological 
group; (3) G is h-complete. These remarks and Theorem 2.7 yield another proof of 
Theorem 5.3. 

Corollary 5.4. If every subgroup of a discrete group G is totally minimal, then G is 
C-compact. 

Corollaries 3.6 and 5.4 imply the following criterion for a countable discrete group 
to be C-compact: 

Theorem 5.5. A countable discrete group G is C-compact tf and only if every sub- 

group of G is totally minimal. 

Example 5.6. There exists an h-complete Lie group G with a closed normal abelian 
subgroup N which is not h-complete. 

Proof. Let G be the semidirect product of N = R2 and K = S&(R) with respect to 
the natural action o : N x K + N. Then N is a closed normal abelian subgroup of G. 
Clearly N is not h-complete. We show that the Lie group G is totally minimal and 
hence h-complete. 
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We prove first that G is minimal. To this end we intend to apply Theorem 3.5 of 

[33] which ensures that the semidirect product G is minimal if four conditions (i) - 

(iv) are satisfied. In our case (i) and (ii) are trivially satisfied. Let r be the euclidean 

topology of N. Condition (iii) consists in asking the action o to be “minimal” in the 

sense that every group topology T on N coarser than r and such that 

a:(N,T)xK--t(N,T) (1) 

is continuous coincides with r (it is easy to see that this condition is also necessary 

for the minimality of G). Let D denote the subgroup of diagonal matrices of K with 

positive entries. Then D leaves invariant A = [w x 0, so induces an action 6’ : A x D + 

A. Let x : D + R+ be the projection on the first coordinate. Then the action 0’ is 

induced by n: and the action g” of R+ on A given by multiplication. Let A x0” R+ 

be the semidirect product obtained in this way. It is isomorphic to the group of upper 

triangular 2 x 2 matrices over R with entries x, 1 and x > 0 on the diagonal. According 

to [9] this group is minimal, hence the action a” is minimal (in the above sense). 

Thus the continuity of the restriction of (1) to a’ implies that the restriction of T on A 

coincides with restriction of z on A. In particular, for every subset of the form A x 0, 
where A is an open interval of [w containing 0, there is T-neighbourhood U of N with 

A n U = A x 0. On the other hand, an easy compactness argument shows that for 

each T-neighbourhood U of 0 in N there exists a T-neighbourhood V of 0 in N such 

that V’ = a( V,SO,(R)) C U. Obviously, V’ is SO, (R)-invariant. Since every open E- 

ball B, with centre 0 in N is also SO, (R)-invariant and A n BE = A n U for some 

SO,,(R)-invariant T-neighbourhood U of 0 in N, we have proved that B, is T-open. 

For subsets C, U C N set O(C, U) := {M E K : (kx E C) cc(x) -x E U n a(U)}. In 

these terms condition iv) of Theorem 3.5 from [33] says: there exists an open symmetric 

set C C N generating N and a neighbourhood U of 0 in N such that if V and U’ are 

neighbourhoods of 0 in N with O(C, U’) & 0( V, U), then V is precompact, i.e. a 

bounded set in N w.r.t. euclidean metric. The verification, similar to that in Example 

3.2(b) of [33], will be omitted. 

According to [33, Theorem 3.51 the group G is minimal. Moreover, the quotient 

G/N % Z,(R) is totally minimal according to [33, Theorem 2.41. Since every non- 

trivial closed normal subgroup of G contains N, this shows that G is totally minimal. 

The local compactness of G yields now that G is h-complete. 0 

Question 5.7. Is every totally minimal complete group h-complete? 

The answer is positive for metrizable groups and locally compact groups. Note that 

complete minimal groups may have non-complete quotients. Actually, every topological 

group is a quotient of a complete minimal group [40]. 

Remark 5.8. When this paper was finished we learnt that a proof of Theorem 2.8 

was obtained independently by Clementino and Tholen [6] in the general setting of 

categorical compactness. 
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